Quadratus Lumborum Block for Post Caesarean Delivery Analgesia: A Review

Anudeep Jafra¹, Jeetinder Kaur Makkar¹*, Nidhi Bhatia¹, Narinder Pal Singh²

¹Department of Anaesthesia and Intensive Care, Post Graduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
²Department of Anaesthesia, MMMSR, MM (DU), Mullana-Ambala, India

Abstract

Caesarean delivery is one of the commonest surgical procedures being performed world-wide, and with it comes the burden for management of acute post-operative pain in parturient. A number of modalities including neuraxial opioids, intravenous drugs and truncal nerve blocks are available to control acute postsurgical pain. Quadratus lumborum block has recently been emerged as a modality for pain relief following caesarean delivery. This review highlights the anatomical aspects, mechanism of action of block, relevant literature search and future directions for use of quadratus lumborum block in parturient undergoing caesarean delivery.

Pain after caesarean delivery

Caesarean delivery (CD) is the commonest surgical procedure performed worldwide. Adequately treated post caesarean pain allows early breastfeeding, enables the mother to take care of the new-born and helps in better maternal-neonatal bonding¹. Management of post-delivery pain is thus one of the key determinants in improving perioperative care after CD²-⁴.

Poorly managed pain after CD can lead to postpartum depression (approximate incidence of 19%), reduced breast feeding success, delayed early ambulation with risk of thromboembolism and progression to persistent post-surgical pain²-⁵. The incidence of persistent post-caesarean pain has been found to be around 40% after three months and can last up to one year⁶-⁷. An ideal analgesic technique should not affect the mother’s ability to take care of a new-born and is minimally transferred via breast milk. None of the single technique (neuraxial opioids, paracetamol, NSAIDS, or nerve blocks) provides sufficient analgesia and is devoid of adverse effects. Hence multimodal analgesia has been advocated to control postoperative pain.

Multimodal techniques include neuraxial opioids, parenteral agents like opioids, paracetamol and NSAIDs. Intrathecal morphine remains the gold standard intraoperative intervention for controlling pain after CD⁸. Although being the standard of care and one of the oldest modalities for pain relief, central neuraxial blockade with intrathecal morphine (ITM) as an adjuvant, is associated with untoward side effects, like, pruritus, nausea, vomiting, and sedation⁹. Further, certain components of multimodal analgesics such as NSAIDS may be contradicted in patients having bleeding or renal impairment.
With widespread availability and increase in expertise with the use of ultrasound by anaesthesiologist, truncal plane blocks like transversus abdominis plane (TAP) block, quadratus lumborum block (QLB), erector spinae plane (ESP) block are being increasingly used for the management of pain in obstetric patients. TAP block has been shown to minimize analgesic requirement and decrease the pain scores in postoperative period. However, it does not provide extensive analgesia due to inadequate visceral coverage and analgesic effect is mainly dependent on the anatomical technique used\(^{10}\). On the other hand, ESP block provides both somatic and visceral analgesia, but it has not been extensively studied in post-CD scenario.

QLB is easy, safe and provides extensive analgesia from T7-L1 dermatomes due to the spread of drug injectate to paravertebral space\(^{11,12}\). Several randomized controlled trials and systematic reviews have recently been published to validate the role of QLB in managing acute pain in parturient following CD\(^{13-20}\).

In this narrative review, we provide an overview of anatomy, techniques and variants of QLB and outline the currently available data regarding its utility in women undergoing cesarean delivery.

Anatomy

QLB was first described by Blanco et al in 2007\(^{21}\). QLB is a posterior abdominal wall block. Also known as interfascial plane block, it requires the local anaesthetic to deposit in the thoracolumbar fascia (TLF). TLF is a posterior extension of abdominal wall muscle fascia and engulfs the quadratus lumborum, psoas major and erector spinae muscles. Drug injected in this plane helps in preventing somatic and visceral pain after abdominal surgery\(^{22,23}\).

The more superficial nature of the block confers it with more safety and better resolution with use of ultrasound guidance. Due to the presence of quadratus lumborum muscle, the needle tip stays away from the peritoneum, hence reducing intraperitoneal injection and bowel injury. The precise mechanism of action of QLB has yet not been deciphered, but drug spread along TLF plays a significant role. Anatomically the TLF is a sheet of fused aponeuroses, consists of anterior, middle and posterior layers. The anterior layer lies anterior to the quadratus muscle. Injectable is deposited between the anterior layer and the muscle, spreading cranially beneath the lateral arcuate ligament to endothoracic fascia. The drug might reach lower thoracic paravertebral space and thus accounts for visceral analgesia\(^{24}\). The middle layer flows between erector spinae muscles and quadratus lumborum muscle. The posterior layer of the TLF encloses the erector spinae muscle. (Figure I) The middle layer of the TLF connects the deep lamina of the posterior layer to the lateral border of erector spinae muscle. It forms a triangular area known as the lumbar interfascial triangle (LIFT), which is the main target site for drug injection in the QLB. The LIFT is close to the thoracic paravertebral space, leading to drug spread in the paravertebral space and provides visceral analgesia\(^{22,23,25}\). Cadaveric studies reveal that direct spread of contrast into the roots and branches of the lumbar plexus can possibly lead to blockade of L1-L3\(^{23,26,27}\). Blockade of sympathetic peripheral nerves can also be explained in a similar way. TLF has an extensive sensory network of both A and C nociceptors and mechanoreceptors, with sympathetic nerve fibres posterior to quadratus muscle and innervating TLF. Drug injected blocks these fibres and lead to changes in both local circulation and autonomic tone, enhance analgesic efficacy and reduce the incidence of both acute and chronic pain\(^{28,29}\).

Numerous studies reported a longer duration of analgesia with QLB as compared to TAP block\(^{13-20}\). The most plausible explanation is the spread of the drug to the paravertebral space; this space is filled with adipose tissue. Since the perfusion in adipose tissue is low, absorption of anaesthetic into the systemic circulation is very slow leading to prolonged duration of action\(^{30}\).

Approaches of the block

The literature describes three different approaches to QLB, these are type 1 also known as lateral approach, type 2 or posterior approach and type 3 or transmuscular approach.

Technique of QLB

Block is preferably performed in the lateral decubitus position as it provides greater exposure to the neuraxial structures. Also, the position is more comfortable for performer as it provides better and firm grip of the ultrasound probe and needle. A low-frequency curved array probe is preferred as it allows visualization of lateral abdominal wall muscles and the quadratus lumborum muscle. The probe is initially placed in mid axillary line between the iliac crest and subcostal margin and moved...
posteriorly, till tapering of three lateral abdominal muscles, and appearance of fascia transversalis and quadratus muscle is observed. At this time, the transverse process of the lumbar vertebra, erector spinae, psoas major and quadratus muscles can be acknowledged. (Figure II)

Needling Phase31,32,33

Type 1/lateral approach (Figure III)- In this approach, needle direction is from the mid axillary line towards the junction of tapered abdominal muscle layer and lateral border of QLM. The drug is deposited once the needle penetrates the transversus abdominis aponeurosis at the lateral border of QLM.

Type 2/posterior approach (Figure III)- In this approach, the direction of the needle is from the posterior axillary line to the posterior border of QLM. The local anaesthetic is deposited on the posterior surface of QLM, between QLM and erector spinae muscle.

Type 3/transmuscular approach (Figure III)- This is the most effective approach but necessitates the patient to be either in lateral or sitting position. The needle is directed from the posterior axillary line through erector spinae and QLM towards the anterior border of QLM. The drug is injected into the tissue plane between QLM and psoas muscle. This leads to the spread of the drug into thoracic paravertebral space and blocks lumbar nerve roots and somatic nerves, provides an extensive blockade from T6-T7 to L1-L2.

Type 4/Intramuscular approach- Herein the drug is injected directly into the quadratus muscle.

Which approach should be preferred? There is limited literature on the safety and efficacy of the three techniques. The choice of the block depends upon the surgical anaesthesia desired and the expertise of the...
increased concentration of LA into the systemic circulation
after 1 acid glycoprotein causing less bound LA, leads to
output, faster perfusion at the injection site and reduced
pronounced in the pregnant female. Increased cardiac
can occur due to large volume of LA, which can be more
difficult in a parturient following a CD

blocks37,38. However, QLB3 requires a steeper trajectory of

space and into somatic and lumbar nerve roots in QLB1, along

superficial nature of block, theoretical risks include the

spread of local anaesthetic to lumbar plexus leading
to weakness of psoas, iliacus and quadriceps muscle

retrospective study reported an incidence of 15% of lower

extremity weakness35. However, prospective trials or larger

meta-analysis did not confirm these complications14,15,20.

It can lead to hypotension because of the spread of
drug in the bilateral paravertebral spaces36. There is also a
potential risk of hematoma formation due to manipulation
of the fascia at the level of exit of blood vessels from
paravertebral space14. Local anaesthetic toxicity (LAST)
can occur due to large volume of LA, which can be more
pronounced in the pregnant female. Increased cardiac
output, faster perfusion at the injection site and reduced
alpha 1 acid glycoprotein causing less bound LA, leads to
increased concentration of LA into the systemic circulation
and higher peak concentrations in parturient37,38. There is
a paucity of large-scale studies to decipher the incidence of
LAST in parturient receiving various abdominal plane
blocks37,38.

The efficacy of QLB has been elicited through several
randomized trials and the block has been in clinical use in
post-caesarean pain since its inception13-20. Blanco et al had
randomized 796 parturient undergoing CD to receive TAP
or QLB and found that QLB is superior to TAP block. Authors
reported significantly lower morphine consumption at
various time intervals up to 48 hours in patients receiving
QLB. Authors could not appreciate any significant
difference in VAS scores among the two groups at different
time points at rest or with movement. They concluded, QLB
be more effective in reducing postoperative morphine
consumption compared to TAP block after CD with effects
lasting till 48 hours14.

In a recent meta-analysis by Singh et al, authors assessed
the analgesic potential of QLB in women undergoing CD19.
The primary outcome was 24 hour opioid consumption
in the postoperative period. Secondary objectives were
opioid consumption at 48 hours, pain scores at varied time
points and side effects. Seven trials meeting the eligibility
criteria were included. There was a significant reduction in
opioid consumption in QLB compared to control or sham
in patients. The mean difference in parenteral morphine
consumption in 24 hours was reported to be 9.93 mg
(95%CI -11.47 to -8.38) in patients receiving QLB along
with spinal anaesthesia without ITM. However, QLB did
not provide any added analgesic benefit to patients who
received ITM. Further, QLB significantly reduced pain

scores both at rest and movement up to 24 hrs19.

In a network meta-analysis conducted by Boghdadly
et al, authors compared TAP block and QLB with each
other and with control with or without ITM20. A total of
31 trials met inclusion criteria and a total of 2188 patients
were included. The primary outcome was cumulative
intravenous morphine equivalent consumption 24 hours
postoperatively. Authors reported that the analgesic efficacy
of TAP and QLB were equivalent and both were superior to
control when used in absence of ITM. However, in presence
of ITM neither of the two blocks could significantly reduce
the morphine consumption in comparison to control.
Most RCTs evaluated lateral or posterior QLB, which is
usually associated with lesser paravertebral space spread
and hence less analgesic profiles. Also, QLB was found to
be inferior to TAP and control groups in terms of time to
ambulation. The authors concluded that both QLB and TAP
block were comparable and superior to control in absence
of ITM.

QLB has been used as a modality for pain relief in many
other surgeries with promising results for postoperative
pain management. It has been used for lower abdominal
procedures, laparoscopic cholecystectomy, laparoscopic
ocorectal surgeries, laparoscopic inguinal hernia
repairs39,40. It has been used for gynaecological procedures
like total abdominal hysterectomy41, extracorporeal shock

Dose and volume of Local Anaesthetic

As it is a plane block, a large volume of local anaesthetic

is required for effective blockade. A volume of 20-30 ml
is usually recommended. (0.2-0.4ml/kg of 0.2% to 0.5%
ropivacaine or 0.1%-0.25% bupivacaine). In a parturient
undergoing CD with a midline incision, a bilateral QLB
should be given with limiting the drug dose.

Contraindications

Absolute contraindications include drug allergy to local
anaesthetic, presence of acute infection at injectate site,
sepsis, any coagulation abnormality or bleeding tendencies
and patient refusal.

Relative contraindications include neurological
disorder; hemodynamically unstable patient.

Complications

Although devoid of major complications due to the
superficial nature of block, theoretical risks include the
spread of local anaesthetic to lumbar plexus leading
to weakness of psoas, iliacus and quadriceps muscle

leading to delay in early ambulation34. Ueshima et al in a
retrospective study reported an incidence of 15% of lower

extremity weakness35. However, prospective trials or larger
meta-analysis did not confirm these complications14,15,20.

The efficacy of QLB has been elicited through several
randomized trials and the block has been in clinical use in
post-caesarean pain since its inception13-20. Blanco et al had
randomized 796 parturient undergoing CD to receive TAP
or QLB and found that QLB is superior to TAP block. Authors
reported significantly lower morphine consumption at
various time intervals up to 48 hours in patients receiving
QLB. Authors could not appreciate any significant
difference in VAS scores among the two groups at different
time points at rest or with movement. They concluded, QLB
be more effective in reducing postoperative morphine
consumption compared to TAP block after CD with effects
lasting till 48 hours14.

In a recent meta-analysis by Singh et al, authors assessed
the analgesic potential of QLB in women undergoing CD19.
The primary outcome was 24 hour opioid consumption
in the postoperative period. Secondary objectives were
opioid consumption at 48 hours, pain scores at varied time
points and side effects. Seven trials meeting the eligibility
criteria were included. There was a significant reduction in
opioid consumption in QLB compared to control or sham
in patients. The mean difference in parenteral morphine
consumption in 24 hours was reported to be 9.93 mg
(95%CI -11.47 to -8.38) in patients receiving QLB along
with spinal anaesthesia without ITM. However, QLB did
not provide any added analgesic benefit to patients who
received ITM. Further, QLB significantly reduced pain

scores both at rest and movement up to 24 hrs19.

In a network meta-analysis conducted by Boghdadly
et al, authors compared TAP block and QLB with each
other and with control with or without ITM20. A total of
31 trials met inclusion criteria and a total of 2188 patients
were included. The primary outcome was cumulative
intravenous morphine equivalent consumption 24 hours
postoperatively. Authors reported that the analgesic efficacy
of TAP and QLB were equivalent and both were superior to
control when used in absence of ITM. However, in presence
of ITM neither of the two blocks could significantly reduce
the morphine consumption in comparison to control.
Most RCTs evaluated lateral or posterior QLB, which is
usually associated with lesser paravertebral space spread
and hence less analgesic profiles. Also, QLB was found to
be inferior to TAP and control groups in terms of time to
ambulation. The authors concluded that both QLB and TAP
block were comparable and superior to control in absence
of ITM.

QLB has been used as a modality for pain relief in many
other surgeries with promising results for postoperative
pain management. It has been used for lower abdominal
procedures, laparoscopic cholecystectomy, laparoscopic
ocorectal surgeries, laparoscopic inguinal hernia
repairs39,40. It has been used for gynaecological procedures
like total abdominal hysterectomy41, extracorporeal shock

Contraindications

Absolute contraindications include drug allergy to local
anaesthetic, presence of acute infection at injectate site,
sepsis, any coagulation abnormality or bleeding tendencies
and patient refusal.

Relative contraindications include neurological
disorder; hemodynamically unstable patient.

Complications

Although devoid of major complications due to the
superficial nature of block, theoretical risks include the
spread of local anaesthetic to lumbar plexus leading
to weakness of psoas, iliacus and quadriceps muscle

leading to delay in early ambulation34. Ueshima et al in a
retrospective study reported an incidence of 15% of lower

extremity weakness35. However, prospective trials or larger
meta-analysis did not confirm these complications14,15,20.

It can lead to hypotension because of the spread of
drug in the bilateral paravertebral spaces36. There is also a
potential risk of hematoma formation due to manipulation
of the fascia at the level of exit of blood vessels from
paravertebral space14. Local anaesthetic toxicity (LAST)
can occur due to large volume of LA, which can be more
pronounced in the pregnant female. Increased cardiac
output, faster perfusion at the injection site and reduced
alpha 1 acid glycoprotein causing less bound LA, leads to
increased concentration of LA into the systemic circulation
and higher peak concentrations in parturient37,38. There is
a paucity of large-scale studies to decipher the incidence of
LAST in parturient receiving various abdominal plane
blocks37,38.
wave lithotripsy42,43, orthopaedic surgeries44,45,46 and also has been used in paediatric surgeries like, orchidopexy, lower abdominal surgeries and inguinal hernia repair47,48.

Future research

Future research should focus on efficacy of different approaches of QLB in isolation or their combinations; the role of various additives and catheter-based techniques. Researchers should also specifically seek the data on block-related complications. Although safe, QLB is a technically difficult block as the needle moves closer to abdominal and retroperitoneal structures and requires vigilance. QLB has a promising role in multimodal analgesic regimens following CD.

References

